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A general strategy is advanced for simplifying nonlinear optimization problems, 
the "ant-lion" method. This approach exploits shape modifications of the cost- 
function hypersurface which distend basins surrounding low-lying minima 
(including global minima). By intertwining hypersurface deformations with 
steepest-descent displacements, the search is concentrated on a small relevant 
subset of all minima. Specific calculations demonstrating the value of this 
method are reported for the partitioning of two classes of irregular but nonran- 
dom graphs, the "prime-factor" graphs and the "pi" graphs. We also indicate 
how this approach can be applied to the traveling salesman problem and to 
design layout optimization, and that it may be useful in combination with 
simulated annealing strategies. 
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annealing. 

1. I N T R O D U C T I O N  

A b r o a d  class of  chal lenging and  i m p o r t a n t  p rob lems  in the na tu ra l  scien- 
ces and  ma themat i c s  involves non l inea r  op t imiza t ion .  This  class includes 
the t ravel ing sa lesman p rob lem,  (1'2~ the ident i f ica t ion of g round- s t a t e  
conf igura t ions  for b iopo lymer s  {3) and  for spin glasses, {4) the op t ima l  l ayou t  

of  circuit  e lements  on c o m p u t e r  chips, (5) and  g raph  pa r t i t ion ing  and  
color ing  (6) problems.  A feature  c o m m o n  to all of these is the search for 
g loba l  m i n i m a  of  a "cost"  funct ion (equivalent ly  "object ive"  or  "po ten t ia l "  
funct ion)  qS(Xl ' ' .XN)  over  a mu l t id imens iona l  space of poin ts  {xi}. The  
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{xi} may be either discrete or continuous, and most problems of 
significance are NP-complete. (7~ 

A few generally applicable methods have been advanced which 
empirically facilitate computational searches for global, or near-global, 
minima. This includes the "simulated annealing" method, ~5) suggested by 
analogy between the multidimensional optimization problems of interest 
and the statistical mechanical problem of evaluating many-body partition 
functions with variable temperature. Our purpose in this paper is to 
explore another potentially useful strategy which can be applied either by 
itself, or perhaps even better in conjunction with a simulated annealing 
program. We illustrate the approach with some calculations for the par- 
titioning of two families of irregular graphs. These calculations establish the 
dramatic simplification of the forbidding combinatorial enumeration that 
in principle must be carried out to effect the optimal partitions. They also 
suggest similar strategies for other nonlinear optimization problems, as 
mentioned in the Section 7. 

2. H Y P E R S U R F A C E  M O D I F I C A T I O N  S T R A T E G Y  

We shall be concerned with the case where the {xi} constitute the full 
N-dimensional Euclidean space E N. The cost function r bounded below, 
will be at least twice differentiable in E N. 

The shape of the r hypersurface in E N+I, ( x  1 . . .XN,  qS), leads to a 
natural division of the E u configurational space (X~...XN) into "basins." 
Each of these basins B~ contains exactly one local minimum c~ of q5 within 
its interior. B~ is defined to be the collection of all configurations {xi} 
which map onto minimum ~ by means of a steepest-descent connection. (8'9) 
Except for an insignificant zero-measure set of boundary points, all {xi} in 
E u c a n  thereby be assigned to basins. 

At least one of the B~ will contain a global minimum, whose iden- 
tification is the central objective. When the number of variables N is large, 
however, these global-minimum basins are typically very difficult to locate; 
the total number of local minima and associated basins tends to grow at 
least exponentially with N. Roughly speaking, then, the chance of ran- 
domly encountering a correct (i.e., global-minimum) basin is exponentially 
small in N. 

This pessimistic situation for large N can be relieved somewhat if it is 
possible to increase the aperture of the global-minimum basins at the 
expense of those which surround higher-lying relative minima. This 
motivates the search for a continuous deformation of the q5 hypersurface 
with the following properties: (a) basins for high-lying relative minima are 
drastically reduced in size, or those minima and their basins are eliminated 
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altogether; (b) global minima before deformation continuously transform 
into deep minima with large basins as the deformation is "turned on." 
Ideally, the deformed hypersurface would exhibit only a single minimum 
which could be traced back to the desired global q~ minimum as the defor- 
mation is continuously switched off. More realistically, several large basins 
would continue to persist, but the correspondingly simplified hypersurface 
topography should substantially shorten the search for global minima, 
particularly by using random initial conditions in E N followed by steepest- 
descent mappings. 

Larval insects of Myrmeleon or related genera trap their ambulatory 
food (frequently ants) by digging conical pits in sandy soil (at the bottom 
of which they lie in wait), and for that reason they are conventionally 
called "ant lions." By analogy, our deformed hypersurfaces should be 
arranged to trap random input data and to guide it to the relevant 
minimum. This approach hence might well be called the "ant-lion strategy." 

In the following sections we will show how these ideas can be applied 
to simplify graph partitioning, first by defining appropriate random graphs, 
and then embedding them in E N and implementing a specific hypersurface 
distortion. 

3. IRREGULAR GRAPHS 

Edge graphs for n vertices are defined by specifying bond matrices 
whose elements B(i , j )  (1 <~i,j<~n), are equal to +1 if i and j are con- 
nected by a bond or 0 if they are unconnected. To illustrate our method, 
we employ two families of irregular, but nonrandom, graphs. We call these 
respectively the prime-factor graphs and the rt graphs. Neither has any 
fundamental mathematical significance (to the best of our knowledge), but 
both provide a convenient testing ground for the simplification strategy. 

3.1. Prime-Factor Graphs 

Every positive integer m has a unique set of prime factors: 

m = 2 q2(m) 3 q3(m) 5 u S ( m )  " �9 " (3.1) 

Define 

e(m) = ~ qp(m) (mod 2) (3.2) 
p 

that is, e(m) is + 1 ifm has an odd number of prime factors or 0 if it has an 
even number of prime factors. Prime-factor graphs are defined by requiring 

B(i, j )  = e(i + j)  (3.3) 
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Table I contains the first few values for e(m). From these values one 
sees that the n = 2 and n = 3 prime-factor graphs are simply connected, 
while that for n = 4 is multiply connected. The graph for n + 1 vertices con- 
tains that for n vertices. We believe that all prime-factor graphs for n ~> 4 
are multiply connected. 

Figure 1 illustrates the n = 20 prime-factor graph. It  seems to be a 
reasonable assumption that in the large-n limit, the fraction of bonds 
present converges to 1/2. 

3.2. n Graphs 

The decimal representation for the transcendental 
available to high order. (1~ Symbolically it can be written 

n= ~ C(j) IO - j  
j=O 

number n is 

(3.4) 

Table  I. Va lues of  ~ ( m )  for  Smal l  m 

m e(m) 

3 1 
4 0 
5 1 
6 0 
7 1 
8 1 
9 0 

10 0 
11 1 
12 1 
13 1 
14 0 
15 0 
16 0 
17 1 
18 1 
19 1 
20 1 
21 0 
22 0 
23 1 
24 0 
25 0 
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Fig. 1. Prime-factor graph for n = 20. 

where C(0 )=  3, C (1 )=  1, C(2 )=4 ,  etc. Next set 

q ( j )  = C ( j )  (mod 2) (3.5) 

so the q's are 0 or 1 according as the C's are even or odd. Table II lists the 
first few values of q(j) .  

Next, order the 
fashion: 

(1/2) n(n -- 1) 

(1, 

(1, 

(1, 

(2, 3) 

(2, n) 

(3, 1) 
] 

vertex pairs 

2) 

3) 

n) 

(i, j)  in "dictionary" 

(3.6) 

( n -  1, n) 

822/52/5-6-20 
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Table II. Values of rl(j) for S m a l l j  

j r/(j) 

1 1 
2 0 
3 1 
4 1 
5 1 
6 0 
7 0 
8 1 
9 1 

I0 1 
11 0 
12 1 
13 1 
14 1 
15 1 
16 0 
17 1 
18 0 
19 0 
2o 0 
21 0 
22 0 
23 0 
24 1 
25 1 

It is easy to see that  if 1 ~< i < j ~< n, the pair (i, j )  occurs at line 

l(i, j )  = (i - 1 ) n - �89 + 1 ) + j (3.7) 

in the list. We use these line numbers  as variable for the q's [Eq. (3.5)] to 
provide the n-graph B's:  

B(i ,  j )  = q[ l ( i ,  j ) ]  (3.8) 

The rc graphs for n = 2 and 3 are simply connected, while those of 
larger n all seem to be multiply connected. But unlike the previous case, the 

graph of  order  n + 1 does not  generally contain that  of order  n as a sub- 
graph. Due  to the inherent irregularity of  the decimal representat ion for re, 
q(j)  will be an irregular (and presumably unbiased) string of O's and l 's; 
consequently,  the fraction of  bonds  present in the large-n limit should again 
be 1/2. 

Figure 2 displays the lr graph for n = 20. 
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Fig. 2. ugraph forn=20. 

4. G R A P H  P A R T I T I O N I N G  

Given any one of the irregular graphs defined in Section 3, its n ver- 
tices can be divided in 2" distinct ways between twosets  S and T. For  any 
such partition, call it P, let b + (P) stand for the number of bonds of the 
given graph that connect vertices in the same set, whether S or T. Likewise, 
let b (p) stand for the number of bonds connecting vertex pairs, one mem- 
ber of which is in S, the other of which is in T. Our basic problem then is 
to find the minimum of 

V(P)  = b + (P) - b_  (P) (4.1) 

for the given graph with respect to all partitions P. Note that the maximum 
of V(P)  is trivially achieved by placing all vertices in the same set. Notice 
also that switching all vertices between S and T leaves V unchanged. 

The required minimum, or minima, can be found for small n by 
examining all partitions. But it is clear that this process bogs down quickly 
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as n increases for irregular graphs of the type we are considering: this com- 
binatorial optimization problem is evidently NP-complete. (7) 

For the purpose of numerical orientation, we have calculated V(P) 
directly for all partitions of all prime-factor and rc graphs with orders 
n~< 30. Figures 3 and 4 show plots versus n of the global-minimum V 
values for the two graph families. The impressions coveyed by these plots 
are similar (though not identical) to each other, namely that Vm~n is 
negative and asymptotically decreasing in a manner roughly proportional 
to n. Even when n is of the order of 20-30, the trends exhibited by these 
figures are sufficiently regular to justify extrapolations to n_-__ 102 to give a 
rough idea about the optimal V's for those much larger problems. 

Figures 5 and 6 provide distributions of V(P) values, in histogram 
form, for the n = 30 irregular graphs. Not surprisingly, the most probable 
V(P) values cluster around zero, as any naive probabilistic argument 
would indicate for random division of vertices between S and T. The key 
feature of these latter two figures is that the global minima are indeed far 
removed from the most probable values, in a region where the distributions 

P r i m a - F o e : o r  9 r o p h ,  n = 30 

Fig. 5. 
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V 

Distribution of the 230 values of V(P) for the n = 30 prime-factor graph. 
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P 1  ~roph, n = 30 
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Distribution of the 230 values of V(P) for the n = 30 z graph. 

have become very sparse. This is a visual indication of the general difficulty 
of finding the global minima, which becomes ever more  severe as the graph 
order  n tends to infinity. 

5. E M B E D D I N G  A N D  D E F O R M A T I O N  

The quartic polynomial  

/ ) ( X )  = X 4 - -  2x 2 (5.1) 

has minima at x = _1 ,  at which v = - 1 .  Consequently,  setting 

I~J0(X 1 " ' 'X . )=  ~ U(Xi) ( 5 . 2 )  
i = 1  

we know that  ~b o will have 2" equivalent minima (at which this function is 
- n )  at the points ( +  1, + 1,..., + 1) in E <  It is easy to see that  the steepest- 
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descent basins for # are all equivalent, all stretch to infinity, and all meet 
at the multidimensional origin in E ~. 

Next consider the n-dimensional potential function: 

~;~(xl...xn) = OSo(Xl...xn) +2 ~ B(i, j) x,xj (5.3) 
i < j = l  

where 2 ~> 0, and B(i, j) is the bond matrix for an irregular graph of order 
n. If 2 is very small, the shape of the ~ hypersurface will be close to that 
q~o, and in particular it will exhibit 2 n minima differing in positions and 
depths only by 0(2) from those of q~o. At any one of these minima the 
xiare partitioned into two subsets, namely those clustered around - 1  and 
those clustered around + 1. The obvious analogy to the vertex partitioning 
of the preceding section leads to the conclusion that to leading order in 2 
the depths of the ~bx minima will be given by 

- n  + V(P) 2 + 0(2 2) (5.4) 

where the partition P now refers to the separation of xi into negative and 
positive subsets. To this order in 2 the optimal graph partitions correspond 
exactly to absolute qs~ minima and vice versa. 

While 2 remains small, the sizes and shapes of basins for q);. obviously 
will differ little from those of ~b o. A uniform random distribution of points 
inside a large hypersphere or hypercube centered at the E n origin to 
leading order would uniformly sample the basins. The corresponding sam- 
pling of minima would then substantially reproduce the V(P) distributions 
as exemplified by Figs. 5 and 6. 

The simple expedient of increasing 2 causes the q~ hypersurface to 
deform in the manner required. This can be easily illustrated by examining 
the elementary n = 2 graph (identical for both the prime-factor and the zc 
graph families), which consists of a single bond connecting two vertices. 
For this case we have 

~2(Xl ,  X2) = U(X1) -~- 1)(X2) -'~ 2XlX 2 (5.5) 

It is trivial to show that for small, positive 2 the expected four minima 
occur in pairs, the deeper of which are located at 

x, = --x2 = +�89 + 2) 1/2 (5.6) 

with corresponding potential 

qs~. = -1(4  + 2) 2 (5.7) 
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The shallower pair is located at 

xl = x2 = +�89 - ),)l/z (5.8) 

and at these relative minima ~ has the higher value 

~ a =  - ~ ( 4 -  2) 2 (5.9) 

As 2 increases toward 4, the latter pair, Eq. (5.8), move toward one 
another while displaying ever shallower basins. Just at 2 = 4 they become 
coincident with each other and with the origin, and at that point cease to 
be minima. When 2 > 4 only the pair in Eq. (5.9) survive, moving farther 
from the origin and deepening as 2 continues to increase. Two of the ant- 
lions have expanded their trapping craters so much that the other two have 
been totally squeezed out! 

The advantage resulting from increasing )0 can be expected to extend 
to cases with arbitrary n. Unfavorable graph partitions will have their 
small-2 minima moved upward and inward, and eventually annihilated, as 
2 increases. At the same time the minima for the most favorable partitions 
will be moved downward, outward from the origin, and be surrounded by 
expanding basins. The next section tests this scenario quantitatively. 

6. N U M E R I C A L  R E S U L T S  

The hypersurface deformation method has been tested on the 
partitioning of both n =  30 irregular graphs by several sets of specific 
calculations. For one of these sets the following procedure was used. 

1. The parameter 2 was initially set equal to 10. 

2. A random collection of 1000 starting configurations (xl...X3o), 
uniformly distributed over the hypercube - l~<xi~< +1, was 
created. 

3. Steepest-descent trajectories were calculated from each of these 
random starting configurations to the basin minima for 2 = 10. 

4. The parameter 2 was reset to 0.01. 

5. Starting with each of the 2 = 1 0  minimum configurations 
generated in step3, above, steepest-descent trajectories were 
created on the 2 = 0.01 hypersurface to locate the relevant collec- 
tion of small-2 minima. 

6. The xi were rounded to the nearest integer (inevitably _+ 1 at this 
stage), and then used to evaluate the partitioned graph energy, 

V= ~ B(i,j)xixj (6.1) 
i < j  
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The intention of this two-stage deformation was to use the large )~ 
value as a means for selecting appropriate sign patterns among the xi, and 
then to use the small 2 value to move each of the xi into the close 
neighborhood of 4-1. 

Figure 7 shows the raw distribution of the 1000 V values obtained for 
the prime-factor graphs. This distribution should be compared with that in 
Figure 5 for all graph partitions. The strong bias toward the lowest 
possible V values is obvious, and prominently includes the global minimum 
- 6 4  that was identified by complete enumeration. 

The raw distribution presented in Fig. 7 contains multiple occurrences 
of specific partitions. Consequently, the data were analyzed to produce a 
derived distribution for the number of distinct partitions for each V. 
Figure 8 shows the result. The count for the global minimum energy 
V= -64  has been strongly depressed, indicating that it was highly redun- 
dant in the raw distribution. This is expected for strongly distended basins 
when 2=  10. However, only three of the six globally optimal minima 

P ~ i m e - ? G c t o r  ~ r G p h  

n = 3 0  

Fig. 7. 

g 

~3 

L 

- 7 0  - 6 5  -6Q - 5 5  - 5 0  - 4 5  

p h i  

-40 

Distribution of n = 30 prime-factor graph partition energies for the 2 = 10, 0.01 defor- 
mation sequence. 
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Fig. 10. Distribution of distinct partitions, by energy, derived from the data of Fig. 9. 

uncovered by enumeration were produced by the hypersurface distortion 
search. 

Figures 9 and 10 display the analogous distributions for the n graph of 
order 30. The pattern is quite similar to that conveyed by Figs. 7 and 8 for 
the prime-factor case, though the global-minimum V is now -59.  Once 
again the deformation and steepest-descent sequence t-6 strongly biases 
the outcome toward optimal or near-optimal partitions. Eight out of ten 
global minima (identified by enumeration) were encountered. 

Several variants of the specific sequence 1 6 have also been examined. 
These include, first, use of 2 = 100, or alternatively ,i = 1000, in step 1 
above (with subsequent steps (2-6) unaltered). Second, a three-stage 2 
reduction scheme was employed, using successively the values 100, 10, and 
0.01. The final distributions were very little changed by these alternatives, 
while the execution times were increased somewhat. In addition, all of these 
procedures were carried out for the two n = 20 graphs as well, with similar 
(but more quickly attained) results. 
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7. D I S C U S S I O N  

Although the partitioning of two specific families of irregular graphs 
has been used for illustration, it should be clear that the hypersurface 
deformation method should have wider applicability. First, it is obvious 
that a more general class of partitioning problems could be studied where 
the bond matrix elements B(i, j) were not restricted to values 0 and 1, but 
could take arbitrary real values. The resulting optimization problems are 
equivalent to finding ground-state spin configurations for Ising spin 
glasses.~4) 

The "traveling salesman problem" can also be cast into an N-dimen- 
sional continuum format and optimal solutions sought by deforming the 
resulting hypersurface. Let R1. . .  Rn be the locations of n "cities" or fixed 
sites in D-dimensional Euclidean space (D = 2 for the conventional travel- 
ing salesman problem). Next introduce n movable particles whose variable 
positions are denoted by r l - - - r  n. The basic potential hypersurface can be 
defined as follows: 

2 
i = 1  j - - 1  i < j = l  i = 1  

where by convention r o - r  n. The lib terms represent short-range binding 
potentials for particles to cities, the Vr terms produce interparticle 
repulsions to prevent multiple occupancy of cities by particles, and the last 
sum in Eq. (7.1) adds up the length of the cyclic tour. This approach views 
different tours of the cities as distinct ways of binding n vertices of a kind of 
cyclic "polymer" onto the fixed binding sites (cities). The optimal tour will 
be the one (aside from cyclic permutations) that minimizes the last sum in 
Eq. (7.1). 

Specific forms for Vb and Vr might be the following: 

Vb(r ) = -- 1-1 exp( - -  r2/l 2) 

V~(r) = (2r ) - '  e x p ( -  r2/4F) 
(7.2) 

containing a positive parameter l whose variation deforms the gt hypersur- 
face in a useful way. In particular, the search calculation would be started 
with a relatively large l value, so binding attractions to cities are weak but 
long-ranged and indeed even overlapping, and the repulsions likewise are 
relatively long-ranged. Starting from virtually any initial set of particle 
positions, with this large l value steepest descent on the g* hypersurface 
would at best only produce a rough approximation to a legitimate tour. 
Nevertheless, the long range of Vb and Vr should substantially simplify the 
topography of g*. Subsequent reduction in l toward zero will shorten the 
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range of both Vr and V b while tightening the binding of the latter, so that 
in the limit of vanishing l, single particles become coincident with their own 
cities. The tour length L then formally follows from 

lim [ T( {r,}mi., l) - n V b ( O , / ) ]  = L (7.3) 
l ~ 0  

Initial studies of this approach to solving the traveling salesman 
problem are favorable, but suggest that it may be desirable to combine the 
hypersurface deformation strategy with simulated annealing using the 
molecular dynamics approach for the cyclic polymer binding process. 

We remark finally that integrated circuit layout problems evidently 
can also be stated in analogous form, using component interaction poten- 
tials whose smoothness and range are varied in a beneficial way to achieve 
the "ant-lion" effect. 
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